Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(11): R584-R610, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279691

RESUMO

Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.


Assuntos
Ecossistema , Herbivoria , Animais , Humanos , Herbivoria/fisiologia , Biomassa , Biodiversidade , Plantas
2.
Ecol Evol ; 12(10): e9414, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36262265

RESUMO

Large herbivore migrations are imperiled globally; however the factors limiting a population across its migratory range are typically poorly understood. Zambia's Greater Liuwa Ecosystem (GLE) contains one of the largest remaining blue wildebeest (Connochaetes taurinus taurinus) migrations, yet the population structure, vital rates, and limiting factors are virtually unknown. We conducted a long-term demographic study of GLE wildebeest from 2012 to 2019 of 107 collared adult females and their calves, 7352 herd observations, 12 aerial population surveys, and concurrent carnivore studies. We applied methods of vital rate estimation and survival analysis within a Bayesian estimation framework. From herd composition observations, we estimated rates of fecundity, first-year survival, and recruitment as 68%, 56%, and 38% respectively, with pronounced interannual variation. Similar rates were estimated from calf-detections with collared cows. Adult survival rates declined steadily from 91% at age 2 years to 61% at age 10 years thereafter dropping more sharply to 2% at age 16 years. Predation, particularly by spotted hyena, was the predominant cause of death for all wildebeest ages and focused on older animals. Starvation only accounted for 0.8% of all unbiased known natural causes of death. Mortality risk differed substantially between wet and dry season ranges, reflecting strong spatio-temporal differences in habitat and predator densities. There was substantial evidence that mortality risk to adults was 27% higher in the wet season, and strong evidence that it was 45% higher in the migratory range where predator density was highest. The estimated vital rates were internally consistent, predicting a stable population trajectory consistent with aerial estimates. From essentially zero knowledge of GLE wildebeest dynamics, this work provides vital rates, age structure, limiting factors, and a plausible mechanism for the migratory tendency, and a robust model-based foundation to evaluate the effects of potential restrictions in migratory range, climate change, predator-prey dynamics, and poaching.

3.
Evol Appl ; 15(1): 22-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126646

RESUMO

Conservation translocations have become an important management tool, particularly for large wildlife species such as the lion (Panthera leo). When planning translocations, the genetic background of populations needs to be taken into account; failure to do so risks disrupting existing patterns of genetic variation, ultimately leading to genetic homogenization, and thereby reducing resilience and adaptability of the species. We urge wildlife managers to include knowledge of the genetic background of source/target populations, as well as species-wide patterns, in any management intervention. We present a hierarchical decision-making tool in which we list 132 lion populations/lion conservation units and provide information on genetic assignment, uncertainty and suitability for translocation for each source/target combination. By including four levels of suitability, from 'first choice' to 'no option', we provide managers with a range of options. To illustrate the extent of international trade of lions, and the potential disruption of natural patterns of intraspecific diversity, we mined the CITES Trade Database for estimated trade quantities of live individuals imported into lion range states during the past 4 decades. We identified 1056 recorded individuals with a potential risk of interbreeding with wild lions, 772 being captive-sourced. Scoring each of the records with our decision-making tool illustrates that only 7% of the translocated individuals were 'first choice' and 73% were 'no option'. We acknowledge that other, nongenetic factors are important in the decision-making process, and hence a pragmatic approach is needed. A framework in which source/target populations are scored based on suitability is not only relevant to lion, but also to other species of wildlife that are frequently translocated. We hope that the presented overview supports managers to include genetics in future management decisions and contributes towards conservation of the lion in its full diversity.

4.
Ecol Appl ; 28(2): 398-408, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178395

RESUMO

Megafauna strongly affect vegetation structure and composition, often leading to management concern. However, the extent of their influence across large scales and varying ecosystems remains largely unknown. Using high resolution airborne Light Detection and Ranging (LiDAR), we investigated landscape-scale changes in vegetation height and three-dimensional (3D) structure across landscapes of varying elephant densities and presence over time, and in response to surface water distribution and terrain variability in the heavily managed thicket biome of the Addo Elephant National Park, South Africa. Elephants caused up to a fourfold reduction in vegetation height and altered the vertical profile, but increased vegetation height variability. Vegetation height also increased with elevation and distance from water, particularly in areas that elephants had long occupied at high densities. Slope had opposing effects on vegetation height, with height increasing with slope in areas long exposed to elephants, but decreasing where elephants had only recently been granted access. Our results suggest that elephants are the primary agents of vegetation change in this ecosystem, but that the strength of their effects varies across the landscape, enabling management to use water and terrain as mitigation tools. We further highlight the necessity of landscape-level experimental studies on megafaunal effects to untangle mechanisms and establish causality.


Assuntos
Caryophyllales , Ecossistema , Elefantes , Animais , África do Sul
5.
J Environ Manage ; 177: 298-305, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27107956

RESUMO

Monitoring is meant to inform conservation authorities, yet managers often don't know when to respond to monitoring results. One of the reasons is that management often lacks consensus on monitoring thresholds for intervention. This results in aimless monitoring without a clear directive on when monitoring indicates a trajectory towards an unacceptable state or impending change, which possibly necessitates intervention. Although experts rarely provide simple, measureable and quantifiable monitoring thresholds as required by management, they are often more comfortable expressing opinions on whether a specific area is desirable or not. This allows thresholds to be reverse engineered: by getting experts to identify sites as desirable and undesirable, field variables can subsequently be measured to derive the boundary between subjectively identified desirable and undesirable states. Such a boundary provides a defendable point for management to assess and consider intervention. Here we describe the identification of monitoring thresholds by defining the limits of desirable canopy cover, derived from expert stakeholder preferences, in the Sundays Spekboom Thicket vegetation of the Addo Elephant National Park, South Africa. The park has experienced variable utilization intensity by large herbivores, especially elephant. For years managers have grappled with the question of what percentage shrub canopy cover is desirable as a management target, but science has failed to provide this. Using experts to assess pre-selected sites as desirable or undesirable across a range of canopy covers, we showed that a canopy cover of ∼65% (±15%) would be desirable for expert stakeholders. We then used satellite imagery to map canopy cover, providing managers for the first time with a large-scale map of canopy cover, indicating desirability status. This approach was useful for facilitating joint-decision making between conservation agencies and stakeholders on tangible indicators of achieving goals, and may be useful in fostering relationships, trust, mutual understanding and transparency, characteristics critical for managing complex socio-ecological systems.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Herbivoria , Animais , Búfalos , Ecossistema , Elefantes , Plantas , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...